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SUMMARY 

In this paper an implicit fractional step method for the solution of the two-dimensional, time-dependent, 
incompressible Navier-Stokes equations is presented. The current method was developed for use on an 
unstructured grid made up of triangles. The basic principles of this method are that the evaluation of the time 
evolution is split into intermediate steps and that for the spatial discretization of the flow equations a finite volume 
discretization on an unstructured triangular mesh is used. The present approach has been used to simulate viscous, 
laminar flows for various Reynolds numbers in test cases such as a backward-facing step, a square cavity and a 
channel with wavy boundaries. 
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1. INTRODUCTION 

During the last decade there have been many papers published internationally on methods, techniques 
and algorithms that numerically solve the momentum and continuity equations for flow problems using 
unstructured meshes. 

Numerical algorithms for the solution of the governing compressible fluid flow equations on 
unstructured meshes have been developed in recent These unstructured algorithms are based 
on the finite volume method and simulate the viscous and inviscid flows around simple geometries 
(such as single aerofoils) and also around complicated geometries (such as a two-element high-lift 
aerofoivflap configuration). 

Solution algorithms for the incompressible Navier-Stokes equations on unstructured meshes have 
also evolved rapidly in recent years. Most of these algorithms6-' are based on the finite element 
method but a fews" are based on the covolume method. The complementary volumes or covolumes 
consist of dual sets of control volumes. The covolumes have the following property: the edges of both 
sets of control volumes are perpendicular to the faces of the other set of control volumes. The simplest 
example consists of two sets of squares of the same size, where the comers of one of the sets are 
positioned at the centres of the other and the relation is mutual. These solutions  algorithm^^^'^ simulate 
the flow in simple and complicated channel geometries, such as the flow in a square cavity, the flow in 
an obstructed channel that is used in gas turbines as labyrinth seals, the flow in packed-bed reactors 
that are used in automobiles for the catalytic oxidation of engine exhaust emissions, etc. The article by 
Choudhury and Nicolaides" focuses on the vorticity-velocity formulation for planar incompressible 
flows. 
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In this work the Chorin fractional step methodI2 is used to simulate two-dimensional, 
incompressible, viscous, laminar flows. The Chorin method is adapted to the basic flow equations 
by splitting the former into two intermediate steps. The new element in this work is that while in the 
original Chorin method an explicit first-order scheme in time is used and the spatial discretization 
depends on the finite difference mesh, known as the MAC mesh, here an implicit first-order scheme in 
time is used and for the spatial discretization of the governing equations a finite volume approximation 
on an unstructured triangular mesh is applied. The control volumes used are the triangle and the 
polygon, which are single control volumes, in contrast with the complementary control volumes. 

The paper is organized as follows: Section 2 discusses the method used for the solution of the flow 
equations, the boundary conditions and the computing procedure. In Section 3 the discretization of the 
flux terms, diffusive terms and Poisson equation is discussed. Finally, the method is applied for the 
prediction of the flow over a wide range of wall geometries. The flow over a backward-facing step is 
examined for two different Reynolds numbers (Re = 67 and 200) and the results are compared with the 
numerical results of other researchers. The flow in a square cavity is also examined for three different 
Reynolds numbers (Re = 100, 400 and 3200) for which numerical results and experimental data are 
available. Finally, the flow in a channel with wavy boundaries is studied for a Reynolds number equal 
to 10 and the results are compared with the analytical solutions. 

2. GOVERNING EQUATIONS 

The momentum and continuity equations of an incompressible viscous fluid are written in 
dimensionless form as 

where ui denotes the velocity component in the xi-direction in a Cartesian co-ordinate system, p is the 
pressure and Re is the Reynolds number of the flow. It should be noted that the convective terms in the 
momentum equation (1) are written in conservative form. 

The proposed method has been developed by Chorin." In the explicit version of the fractional step 
method described by Chorin an explicit first-order scheme in time is used. The spatial discretization 
depends on the actual finite difference mesh consisting of quadrilateral elements. While Chorin used a 
non-staggered grid in his implicit version of the fractional step method, Andersson and Kri~toffersen'~ 
defined the dependent variables on the staggered grid positions with a similar implicit fractional step 
method. On the staggered grid the values of the velocities are evaluated at the middle of a cell's faces 
and the value of the pressure at the centre of the cell. This mesh distribution is known as the MAC 
mesh. l4 

In the current fractional step method an implicit first-order scheme in time is used with respect to the 
convective and diffusive terms. Now the method is adapted to the basic equations (1) and (2) by 
splitting the former into two intermediate steps: 

u!: 1 1  -uu" (3 1 azu; -+-(U. ) =-- 
At I " Re &,ax, ' (3) 



SOLUTION OF INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 1275 

where u; is an intermediate or tentative value of the velocity component and the superscript n denotes 
the solution at time t = nAt, the time step being At. Thus, if the solution tends to a steady state, the 
velocity uy+ at the new time level becomes equal to uy according to equations (3) and (4). 

An essential feature of the decomposition (3), (4) is that the tentative velocity uf can be calculated 
implicitly from equation (3), while the new velocity uy+' is related to the new pressure field p"+l 
equation (4). By taking the divergence of equation (4) and making subsequent use of the 
incompressibility condition (2) for uy+' , we obtain the Poisson equation 

Thus, withp"+l known from the solution of equation (5 ) ,  the velocities of the new time level n + 1 are 
readily derived fiom equation (4) as 

For the spatial discretization of the governing equations a finite volume approximation on an 
unstructured triangular mesh is used. On the triangular mesh the velocities are stored at the nodes of 
the triangular cell and the pressure at the centre of it. Using the finite volume technique on an 
unstructured triangular mesh, the flux terms are calculated at the nodes and across the edges of the 
triangular cell and the diffusive terms at the nodes. 

A structured triangular grid, i.e. constructed using interpolations, is used for the numerical solution 
of the flow equations, but the current algorithm considers it as unstructured. For structured grids, mesh 
co-ordinate directions can be identified and used to number the cells and nodes. Thus a cell may be 
identified by its two indices I and J in the mesh co-ordinate system and its neighbours may be located 
by incrementing one of these indices. However, for unstructured meshes this is no longer possible, 
since in principle the cells and nodes are ordered randomly. Thus the use of unstructured meshes 
requires the storage of connectivity information along with the use of an indirect addressing system. 

Since flux and diffusive terms are to be calculated at each point of the mesh, a data structure based 
on the mesh points can be employed. To define a point-based structure, 18 integer addresses must be 
stored for each point. Thus an array must be dimensioned KNu(KMAxx 18), where KMAX is the total 
number of points in the mesh. For each point the first 12 values in KNU correspond to the addresses of 
the 12 neighbouring points of that point and the other six values correspond to the addresses of the six 
triangular cells which have that point as a common vertex. 

For the above-mentioned test cases four types of boundaries are used inflow boundary, outflow 
boundary, solid surfaces and symmetry axis. For each type and for each unknown let us see what 
boundary conditions are to be specified. 

Boundary conditions for the velocities 

Inflow boundary. Here we apply a uniform or fully developed profile for the u-velocity, while the v- 
velocity is set to zero: 

u=const. or u =  u(y) ,  v = 0. 

OutJlow boundary. Here we apply the fully developed flow conditions 
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Symmetry axis. We apply symmetry conditions. Both the first-order derivative of the u-component 
of the velocity in the y-direction and the v-component of the velocity are set to zero: 

Solid su$aces. We apply non-slip conditions: 
u = v = o .  

Boundary conditions for the pressure 

The boundary conditions imposed on p are consistent with equation (4). Thus, if we take 

on a boundary with its normal along the xi-direction, equation (6) becomes 

= 0, 
apn + 

dXi 

i.e. zero normal derivative ofpn+l on the boundary. 

condition (8) is an interior Neumann problem for the three-dimensional case, for which 
The boundary value problem given by the Poisson equation ( 5 )  subject to the Neumann boundary 

is a necessary condition for a solution to exist. By using Gauss's theorem, the compatibility condition 
(9) becomes 

where ni denotes the components of the unit normal vector to the boundary S of the calculation domain 
K Thus, by introducing equation (7) in the surface integral (lo), it is observed that compatibility is 
automatically achieved provided that the boundary conditions on u:+' assure zero net flux into the 
calculation domain. 

Around the computational domain there are 'pseudocells' that are used for the implementation of the 
boundary conditions. This is necessary because the pressure is calculated at the centre of the triangular 
cell and the flux terms are calculated across the edges of it. 

In summary, the present solution algorithm consists of the following basic steps. 

1. An initial field for velocity and pressure is applied. 

2. The momentum equations are solved and a velocity field that does not Mfil the continuity 
equation is achieved. The solution of the momentum equation is obtained using the Gauss-Seidel 
method. 

3. The Poisson equation is solved and a pressure field is calculated. The solution of the Poisson 
equation is also obtained using the Gauss-Seidel method. 

4. The velocity components at the new time step level are evaluated from equation (4). If 
convergence of the velocity and pressure is achieved, the calculation of the flow field is 
completed. ConveTgence is achieved if the residuals are less than lop4. 
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3. NUMERICAL SOLUTION 

In this work the Navier-Stokes equations are integrated in time using an implicit first-order time- 
stepping scheme. These equations are integrated in space using a finite volume method developed for 
an unstructured grid made up of triangles. For the integration around a finite volume the derivatives of 
the flow equations must be converted into closed line integrals using some formulation of the Stokes 
theorem, which is described by the following equation: 

J, z . G = .I, rota. ii d ~ ,  

where G is the elementary arc, dE is the elementary surface and n' is the normal vector to this surface. 
Two finite volumes are used, triangle and polygon, because the pressure is calculated at the centre of 

the triangular cell and the velocities at the nodes of it. Thus two such finite volume discretization 
schemes have been adapted, the cell-centred scheme and the nodal scheme. 

3.1. Discretization offlux terms at polygon centre 

In this case the velocities are stored at the nodes of the polygon and the flux terms are calculated at 
the node c (see Figure 1). The nodal finite volume discretization scheme15 is used for the discretization 
of the flux terms that appear in the momentum equations (convective terms). The first differences are 
computed as 

where A, is the area of the polygonal control volume (1-2-345-6) (see Figure l), U is the 
component of the fluxes, x and y are the co-ordinates of the polygon vertices and i refers to the six 
vertices of the polygonal control volume. 

In Figures 1-5 the numbers without parentheses refer to the index of the equations and the numbers 
in parentheses denote the same locations of Figure 3. In the same figures (P) and (U) denote the 
locations of pressure and velocity nodes respectively. 

The closed line integral is approximated by the trapezoidal integration rule: for each edge delimiting 

(4) 4 5 (5)  

Figure 1.  Equivalent control volume for finite volume approximation to flux terms at polygon centre 
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the control volume boundary, the contribution to the closed line integral is obtained by evaluating the 
velocities at the nodes on both ends of the edge and taking the scalar product of their averaged value 
with the directed length of the edge. This discretization can be shown to be equivalent to a finite 
element Galerkin approximation,” which is known to be second-order-accurate in space for a mesh 
consisting of equilateral triangles. 

3.2. Discretization offlux terms at triangle centre 

In this case the spatial discretization procedure begins by storing the velocities at the vertices of the 
triangular cells. The flux terms must be calculated at the centres of the triangles (see Figure 2). This is 
achieved by computing the required first differences for the velocities at the triangle  centre^.^ For a 
piecewise linear approximation of the velocities in space the first differences are constant over each 
triangle and are computed as 

where AK is the area of the triangular control volume (1-2-3) (see Figure 2), U is the component of the 
velocity and the summation over i refers to the three vertices of the triangle. 

Generally the nodal finite volume scheme is used for the discretization of the derivatives of the 
velocity that appear on the right-hand side of the Poisson equation, but in this case the control volume 
is not polygonal but triangular. The closed line integral is approximated in the same manner as 
described in Section 3.1. 

3.3. Discretization of difisive terms at polygon centre 

The spatial discretization procedure begins by storing the velocities at the vertices of the polygon (1- 
2 - 3 4 5 - 6 )  and at the vertices of the neighbouring triangles (see Figure 3). The diffisive terms must 
be calculated at the node c and this is achieved by computing the second-order derivatives at the same 
point. The required second differences may be computed as 

Figure 2. Equivalent control volume for finite volume approximation to flux terms at triangle centre 
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Figure 3. Equivalent control volume for finite volume approximation to diffusive terms at polygon centre 

where A, denotes the area of the polygonal control volume, U denotes the component of the velocity, i 
refers to the six vertices of the polygon and i + refers to the six middles of the edges of the polygon. 

The viscous components involve the evaluation of derivatives of the primitive variables (velocities) 
on each polygonal contour. To be consistent with the overall contour integral method of evaluating 
derivatives, it remains to define a suitable contour for obtaining first derivatives on edges. There is no 
unique way to perform the integration, but perhaps the simplest is to use the contour shown in Figure 4, 
so that the derivative at the middle of the edge is the sum of four terms.5 The first differences at the 
middle of the edge are defined as 

4 (4 
Figure 4. Equivalent control volume for finite volume approximation to first-order derivative of velocity at middle of polygon 

edge 
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where A is the sum of the areas of the two adjacent triangles which define the contour, U is the velocity 
component and the summation overj refers to the four vertices of the quadrilateral. 

The nodal finite volume scheme, which is used for discretization of the first and second differences 
and the overall contour integral, is approximated in the same way as described in Section 3.1. 

3.4. Discretization of Jirst-order pressure terms at triangle centre 

The cell-centred finite volume scheme2 is used for discretization of the first-order pressure terms, 
which are calculated at the centre of the triangular control volume (1-2-3) (see Figure 5). The first 
Qfferences are defined as 

where AK denotes the area of the triangular control volume, P denotes the pressure, i refers to the three 
vertices of the triangular cell and j  refers to the centres of the three neighbowing triangles. 

The pressure is stored at the centre of each cell and assumed to represent an average value over the 
entire control volume. In order to evaluate the closed line integral, estimates of the pressure along the 
edges of the triangular cell are needed. These are taken as the average of the values at both cells on 
either side of that edge. This is the equivalent of central differencing on a Cartesian grid and is second- 
order-accurate for a mesh that consists of equilateral triangles. 

3.5. Discretization of second-order pressure terms at triangle centre 

The second-order pressure terms that are present on the left-hand side of the Poisson equation are 
also calculated at the centre K of the triangular control volume (1-2-3) (see Figure 5). These 
calculations require the evaluation of second differences of pressure at the same point K. The second- 
order derivatives of pressure may be computed as 

Figure 5. Equivalent control volume for finite volume approximation to first- and second-order pressure terms at triangle centre 
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where AK,  P,  i and j are the same as defined Section 3.4 and Px and P,, are the x and y first-order 
derivatives of pressure respectively. 

For the evaluation of second differences of pressure the cell-centred finite volume discretization 
scheme is also used, but the first-order derivatives of pressure must be known. These can be evaluated 
according to Section 3.4. 

4. RESULTS AND VALIDATION 

4.1. Flow over a backward-facing step 

200, is examined. The Reynolds number is calculated from 
In this case the flow over a backward-facing step for two different Reynolds numbers, Re = 67 and 

(11) 
UrefLref R e = - ,  

where U,f is the mean velocity at the channel inlet, Lref is the height H of the second part of the 
channel (see Figure 6) and v,f is the reference kinematic viscosity. 

Figure 6 shows the geometric characteristics of the backward-facing step and the grid used. This grid 
is the same for both Reynolds numbers and consists of 3402 nodes. The dimensionless length of the 
first part of the channel is 1 = 3, its dimensionless height is h = 0.5, the total dimensionless length of 
the channel is L = 15 and the dimensionless height of the second part is H = 1. The dimensionless 
profile of axial velocity at the inflow boundary is given by 

V,f 

In Figure 7 the steady u-component of the velocity as a function of the normalized co-ordinate 
y / ( H  - h) is shown at several x-locations, x = 2.3, 3.4, 4 and 5, for Re = 67. In Figure 8 the u- 
component of the velocity at the same positions of the channel is shown for Re = 200. The time step 
At = 0.009 is used for both Reynolds numbers. The profiles plotted with a solid line are the results of 
the current method and the rest of the profiles are numerical results of other re~earchers.'~>'~ 

4.2. Flow in a square cavity 

In this case the flow in a square cavity for three different Reynolds numbers, Re = 100,400 and 
3200, is examined. The Reynolds number is calculated using equation (1 l), where U,f is the fluid 
velocity of the moving boundary and L,f is the length of the side of the square cavity. Figure 9 shows 
the grid used for Re = 100 and 400, which consists of 1654 nodes. For Re = 3200 a similar grid 
consisting of 14,996 nodes is used. The dimensionless u-velocity profile at the top boundary is u = 1 
and for the other boundaries the no-slip conditions are applied. 

Figure 6. Grid for backward-facing step 
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Figure 7. Comparison of u-velocity profiles for Re = 67 : (a) x = 2.3, (b) x = 3.4, (c) x = 4.0, (d) x = 5.0 
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Figure 8. Comparison of u-velocity profiles for Re = 200 : (a) x = 2.3, (b) x = 3.4, (c) x = 4.0, (d) x = 5.0 
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1 .o 

0.5 

0.0 

Figure 9. Grid for square cavity (Re = 100 and 400) 
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Figure 10 shows the velocity profiles for u along a vertical line passing through the geometric centre 
of the cavity for Re = 100,400 and 3200. The time steps used are At = 0.007 for Re = 100 and 400 
and At = 0.001 for Re = 3200. The results of the current method are plotted with a solid line, the 
numerical results of other  researcher^'^^'^ with a broken line and the symbols are experimental data.2o 
The thinning of the wall boundary layers with increasing Reynolds number is evident from these 
profiles, although the rate of this thinning is slow. 

The development of the flow as a function of Reynolds number is shown in Figure 1 1  for three 
conditions: Re = 100, 400 and 3200. As is well known, the centre of the primary vortex is offset 
towards the top right corner at Re = 100. It moves towards the geometric centre of the cavity with 
increasing Reynolds number. 

y 0.5 
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Figure 10. Comparison of u-velocity along vertical line through geometric centre: (a) Re = 100, (b) Re = 400, (c) Re = 3200 
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fnl .-, 

( C )  

Figure 1 I .  Streamline contours for cavity flow: (a) Re = 100, (b) Re = 400, (c) Re = 3200 

The static and total pressure contours are shown in Figure 12. In the viscous limit (small Reynolds 
number) the static and total pressures show no resemblance to the streamlines. The contours cannot be 
closed but must end on boundaries. Conversely, for the inviscid limit (high Reynolds number) the total 
pressure is conserved on streamlines, so that the contours of total pressure should become identical 
with the streamlines. This development from viscous to inviscid flow is indicated clearly by Figure 12. 
From the plots we conclude that the total pressure distribution is the best indicator of the degree of 
viscous and inviscid flow. 

Finally, Figure 13 shows the convergence history of the primitive flow variables for Re = 100. 

4.3. Laminar steady flow in a sinusoidal channel 

In this case the viscous flow past wavy boundaries is examined, which has attracted considerable 
interest in recent years because of the important role it plays in several phenomena: the generation of 
wind waves on water, the formation of sedimentary ripples in river channels and dunes in deserts, the 
stability of a liquid film in contact with a gas stream, and finally in biofluid mechanics. The calculation 
domain consists of four periods of the channel wavy boundary, described by the equation 

y =  1 -&(1 +cos x). 

In this case the coefficient is E = 0.2. In Figure 14 the grid for one period of a channel with wavy 
boundaries is presented, which consists of 676 nodes. The solution is performed in a channel of four 
periods length consisting of 2704 nodes. The flow equations for Re = 10 are solved. The Reynolds 
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(a) Re=100 

u 
(b) Re=400 

(d) Re=100 

(el Re=400 

(c) Re=3200 (f) Re=3200 

Figure 12. (a-c) Static and (d-f) total pressure contours for cavity flow 

number calculation is based on equation (1 1). The dimensionless velocity profile at the inlet is 
described by 

where h = 0-6 for coefficient E = 0-2. For this case the time step used is At = 0-01. 
In Figure 15 the profiles of the ucomponent of the velocity in the same position of each period of the 

channel are presented. From Figure 15 it is seen that the flow periodicity is directly established. Isolating 
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Figure 13. Convergence history for Re = 100 
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Figure 14. Grid for one period of channel with wavy boundaries 
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Figure 16. u-velocity (and v-velocity) profiles at various cross-sections of channel for Re = 10 
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Figure 17. Comparison of u-velocity profiles for Re = 10 : (a) x = 1, (b) x = 3, (c) x = 5 ,  (d) x = 6 

one of the channel periods, the numerical results of this method are compared with the analytical results 
from Reference 2 1. In Figure 16 the velocity profiles u and v in a channel with sinusoidal walls are shown. 
The velocity profiles are plotted at various cross-section of the channel, x = 0, 1, 2, 3, 4, 5 and 6. In 
Figure 17 the comparison of u-velocity profiles is shown. The profiles of the present method are plotted 
with a solid line, while the analytical solutions are indicated by symbols. 
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5.  CONCLUSIONS 

A novel, efficient finite volume Navier-Stokes method for unstructured grids has been developed. The 
current method has been validated by solving the flow over a backward-facing step, in a square cavity 
and in a channel with wavy boundaries and by comparing the results with the results of other 
researchers and other experimental data. Through the use of an unstructured grid the method is capable 
of computing flow fields over various geometries. 

Comparing the current method with the original SOLA algorithm22 and the Chorin method applied 
on an MAC mesh (original Chorin method), the conclusion drawn is that the present method requires 
less time to converge on a specific criterion than the SOLA algorithm but more time than the original 
Chorin method. Concerning the present method, about 70% of the required time is consumed by the 
solution of the Poisson equation, i.e. in the calculation of the pressure. 

In a triangular mesh the number of triangular control volumes is almost twice the number of mesh 
points. This, together with the fact that the pressure is calculated at the centre of the triangular cell, 
explains why the current method requires more time to converge than the original Chorin method. 

Solution times could always be improved if the velocities were calculated at the centre of the triangle 
and the pressure at its nodes. 
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